数据压倒一切。如果选择了正确的数据结构并把一切组织的井井有条,正确的算法就不言自明。编程的核心是数据结构,而不是算法。
——Rob Pike
说明
· 本文基于这样的认识:数据是易变的,逻辑是稳定的。
· 本文例举的编程实现多为代码片段,但不影响描述的完整性。
· 本文例举的编程虽然基于C语言,但其编程思想也适用于其他语言。
· 此外,本文不涉及语言相关的运行效率讨论。
一、概念提出
所谓表驱动法(Table-Driven Approach)简而言之就是用查表的方法获取数据。此处的“表”通常为数组,但可视为数据库的一种体现。
根据字典中的部首检字表查找读音未知的汉字就是典型的表驱动法,即以每个字的字形为依据,计算出一个索引值,并映射到对应的页数。相比一页一页地顺序翻字典查字,部首检字法效率极高。
具体到编程方面,在数据不多时可用逻辑判断语句(if…else或switch…case)来获取值;但随着数据的增多,逻辑语句会越来越长,此时表驱动法的优势就开始显现。
例如,用36进制(A表示10,B表示11,…)表示更大的数字,逻辑判断语句如下:
if(ucNum < 10) { ucNumChar = ConvertToChar(ucNum); } else if(ucNum == 10) { ucNumChar = 'A'; } else if(ucNum == 11) { ucNumChar = 'B'; } else if(ucNum == 12) { ucNumChar = 'C'; } //... ... else if(ucNum == 35) { ucNumChar = 'Z'; }
当然也可以用switch…case结构,但实现都很冗长。而用表驱动法(将numChar存入数组)则非常直观和简洁。如:
CHAR aNumChars[] = {'0', '1', '2', /*3~9*/'A', 'B', 'C', /*D~Y*/'Z'}; CHAR ucNumChar = aNumChars[ucNum % sizeof(aNumChars)];
CHAR ucNumChar = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[ucNum];
使用表驱动法时需要关注两个问题:一是如何查表,从表中读取正确的数据;二是表里存放什么,如数值或函数指针。前者参见1.1节“查表方式”内容,后者参见1.2节“实战示例”内容。
1、查表方式
常用的查表方式有直接查找、索引查找和分段查找等。
1.1直接查找
即直接通过数组下标获取到数据。如果熟悉哈希表的话,可以很容易看出这种查表方式就是哈希表的直接访问法。
如获取星期名称,逻辑判断语句如下:
if(0 == ucDay) { pszDayName = "Sunday"; } else if(1 == ucDay) { pszDayName = "Monday"; } //... ... else if(6 == ucDay) { pszDayName = "Saturday"; }
而实现同样的功能,可将这些数据存储到一个表里:
CHAR *paNumChars[] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"}; CHAR *pszDayName = paNumChars[ucDay];
1.2 索引查找
有时通过一次键值转换,依然无法把数据(如英文单词等)转为键值。此时可将转换的对应关系写到一个索引表里,即索引访问。
如现有100件商品,4位编号,范围从0000到9999。此时只需要申请一个长度为100的数组,且对应2位键值。但将4位的编号转换为2位的键值,可能过于复杂或没有规律,最合适的方法是建立一个保存该转换关系的索引表。采用索引访问既节省内存,又方便维护。比如索引A表示通过名称访问,索引B表示通过编号访问。
1.3 分段查找
通过确定数据所处的范围确定分类(下标)。有的数据可分成若干区间,即具有阶梯性,如分数等级。此时可将每个区间的上限(或下限)存到一个表中,将对应的值存到另一表中,通过第一个表确定所处的区段,再由区段下标在第二个表里读取相应数值。注意要留意端点,可用二分法查找,另外可考虑通过索引方法来代替。
如根据分数查绩效等级:
#define MAX_GRADE_LEVEL (INT8U)5 DOUBLE aRangeLimit[MAX_GRADE_LEVEL] = {50.0, 60.0, 70.0, 80.0, 100.0}; CHAR *paGrades[MAX_GRADE_LEVEL] = {"Fail", "Pass", "Credit", "Distinction", "High Distinction"}; static CHAR* EvaluateGrade(DOUBLE dScore) { INT8U ucLevel = 0; for(; ucLevel < MAX_GRADE_LEVEL; ucLevel++) { if(dScore < aRangeLimit[ucLevel]) return paGrades[ucLevel]; } return paGrades[0]; }
上述两张表(数组)也可合并为一张表(结构体数组),如下所示:
typedef struct{ DOUBLE aRangeLimit; CHAR *pszGrade; }T_GRADE_MAP; T_GRADE_MAP gGradeMap[MAX_GRADE_LEVEL] = { {50.0, "Fail"}, {60.0, "Pass"}, {70.0, "Credit"}, {80.0, "Distinction"}, {100.0, "High Distinction"} }; static CHAR* EvaluateGrade(DOUBLE dScore) { INT8U ucLevel = 0; for(; ucLevel < MAX_GRADE_LEVEL; ucLevel++) { if(dScore < gGradeMap[ucLevel].aRangeLimit) return gGradeMap[ucLevel].pszGrade; } return gGradeMap[0].pszGrade; }
该表结构已具备的数据库的雏形,并可扩展支持更为复杂的数据。其查表方式通常为索引查找,偶尔也为分段查找;当索引具有规律性(如连续整数)时,退化为直接查找。
使用分段查找法时应注意边界,将每一分段范围的上界值都考虑在内。找出所有不在最高一级范围内的值,然后把剩下的值全部归入最高一级中。有时需要人为地为最高一级范围添加一个上界。
同时应小心不要错误地用“<”来代替“<=”。要保证循环在找出属于最高一级范围内的值后恰当地结束,同时也要保证恰当处理范围边界。
2、实战示例
本节多数示例取自实际项目。表形式为一维数组、二维数组和结构体数组;表内容有数据、字符串和函数指针。基于表驱动的思想,表形式和表内容可衍生出丰富的组合。
2.1 字符统计
问题:统计用户输入的一串数字中每个数字出现的次数。
普通解法主体代码如下:
INT32U aDigitCharNum[10] = {0}; /* 输入字符串中各数字字符出现的次数 */ INT32U dwStrLen = strlen(szDigits); INT32U dwStrIdx = 0; for(; dwStrIdx < dwStrLen; dwStrIdx++) { switch(szDigits[dwStrIdx]) { case '1': aDigitCharNum[0]++; break; case '2': aDigitCharNum[1]++; break; //... ... case '9': aDigitCharNum[8]++; break; } }
这种解法的缺点显而易见,既不美观也不灵活。其问题关键在于未将数字字符与数组aDigitCharNum下标直接关联起来。
以下示出更简洁的实现方式:
for(; dwStrIdx < dwStrLen; dwStrIdx++) { aDigitCharNum[szDigits[dwStrIdx] - '0']++; }
switch(OnuTime.Month) { case 1: case 3: case 5: case 7: case 8: case 10: case 12: if(OnuTime.Day>31 || OnuTime.Day<1) { CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~31)!!! ", OnuTime.Day); retcode = S_ERROR; } break; case 2: if(((OnuTime.Year%4 == 0) && (OnuTime.Year%100 != 0)) || (OnuTime.Year%400 == 0)) { if(OnuTime.Day>29 || OnuTime.Day<1) { CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~29)!!! ", OnuTime.Day); retcode = S_ERROR; } } else { if(OnuTime.Day>28 || OnuTime.Day<1) { CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~28)!!! ", OnuTime.Day); retcode = S_ERROR; } } break; case 4: case 6: case 9: case 11: if(OnuTime.Day>30 || OnuTime.Day<1) { CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~30)!!! ", OnuTime.Day); retcode = S_ERROR; } break; default: CtcOamLog(FUNCTION_Pon,"Don't support this Month: %d(1~12)!!! ", OnuTime.Month); retcode = S_ERROR; break; }
以下示出更简洁的实现方式:
#define MONTH_OF_YEAR 12 /* 一年中的月份数 */ /* 闰年:能被4整除且不能被100整除,或能被400整除 */ #define IS_LEAP_YEAR(year) ((((year) % 4 == 0) && ((year) % 100 != 0)) || ((year) % 400 == 0)) /* 平年中的各月天数,下标对应月份 */ INT8U aDayOfCommonMonth[MONTH_OF_YEAR] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; INT8U ucMaxDay = 0; if((OnuTime.Month == 2) && (IS_LEAP_YEAR(OnuTime.Year))) ucMaxDay = aDayOfCommonMonth[1] + 1; else ucMaxDay = aDayOfCommonMonth[OnuTime.Month-1]; if((OnuTime.Day < 1) || (OnuTime.Day > ucMaxDay) { CtcOamLog(FUNCTION_Pon,"Month %d doesn't have this Day: %d(1~%d)!!! ", OnuTime.Month, OnuTime.Day, ucMaxDay); retcode = S_ERROR; }
2.3 名称构造
问题:根据WAN接口承载的业务类型(Bitmap)构造业务类型名称字符串。
普通解法主体代码如下:
void Sub_SetServerType(INT8U *ServerType, INT16U wan_servertype) { if ((wan_servertype & 0x0001) == 0x0001) { strcat(ServerType, "_INTERNET"); } if ((wan_servertype & 0x0002) == 0x0002) { strcat(ServerType, "_TR069"); } if ((wan_servertype & 0x0004) == 0x0004) { strcat(ServerType, "_VOIP"); } if ((wan_servertype & 0x0008) == 0x0008) { strcat(ServerType, "_OTHER"); } }
以下示出C语言中更简洁的实现方式:
/* 获取var变量第bit位,编号从右至左 */ #define GET_BIT(var, bit) (((var) >> (bit)) & 0x1) const CHAR* paSvrNames[] = {"_INTERNET", "_TR069", "_VOIP", "_OTHER"}; const INT8U ucSvrNameNum = sizeof(paSvrNames) / sizeof(paSvrNames[0]); VOID SetServerType(CHAR *pszSvrType, INT16U wSvrType) { INT8U ucIdx = 0; for(; ucIdx < ucSvrNameNum; ucIdx++) { if(1 == GET_BIT(wSvrType, ucIdx)) strcat(pszSvrType, paSvrNames[ucIdx]); } }
新的实现将数据和逻辑分离,维护起来非常方便。只要逻辑(规则)不变,则唯一可能的改动就是数据(paSvrNames)。
2.4 值名解析
问题:根据枚举变量取值输出其对应的字符串,如PORT_FE(1)输出“Fe”。
//值名映射表结构体定义,用于数值解析器typedef struct{ INT32U dwElem; //待解析数值,通常为枚举变量 CHAR* pszName; //指向数值所对应解析名字符串的指针 }T_NAME_PARSER; /****************************************************************************** * 函数名称: NameParser * 功能说明: 数值解析器,将给定数值转换为对应的具名字符串 * 输入参数: VOID *pvMap :值名映射表数组,含T_NAME_PARSER结构体类型元素 VOID指针允许用户在保持成员数目和类型不变的前提下, 定制更有意义的结构体名和/或成员名。 INT32U dwEntryNum :值名映射表数组条目数 INT32U dwElem :待解析数值,通常为枚举变量 INT8U* pszDefName :缺省具名字符串指针,可为空 * 输出参数: NA * 返回值 : INT8U *: 数值所对应的具名字符串 当无法解析给定数值时,若pszDefName为空,则返回数值对应的16进制格式 字符串;否则返回pszDefName。 ******************************************************************************/ INT8U *NameParser(VOID *pvMap, INT32U dwEntryNum, INT32U dwElem, INT8U* pszDefName) { CHECK_SINGLE_POINTER(pvMap, "NullPoniter"); INT32U dwEntryIdx = 0; for(dwEntryIdx = 0; dwEntryIdx < dwEntryNum; dwEntryIdx++) { T_NAME_PARSER *ptNameParser = (T_NAME_PARSER *)pvMap; if(dwElem == ptNameParser->dwElem) { return ptNameParser->pszName; } //ANSI标准禁止对void指针进行算法操作;GNU标准则指定void*算法操作与char*一致。 //若考虑移植性,可将pvMap类型改为INT8U*,或定义INT8U*局部变量指向pvMap。 pvMap += sizeof(T_NAME_PARSER); } if(NULL != pszDefName) { return pszDefName; } else { static INT8U szName[12] = {0}; //Max:"0xFFFFFFFF" sprintf(szName, "0x%X", dwElem); return szName; } } 以下给出NameParser的简单应用示例: //UNI端口类型值名映射表结构体定义 typedef struct{ INT32U dwPortType; INT8U* pszPortName; }T_PORT_NAME; //UNI端口类型解析器 T_PORT_NAME gUniNameMap[] = { {1, "Fe"}, {3, "Pots"}, {99, "Vuni"} }; const INT32U UNI_NAM_MAP_NUM = (INT32U)(sizeof(gUniNameMap)/sizeof(T_PORT_NAME)); VOID NameParserTest(VOID) { INT8U ucTestIndex = 1; printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("Unknown", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 0, "Unknown")) ? "ERROR" : "OK"); printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("DefName", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 0, "DefName")) ? "ERROR" : "OK"); printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("Fe", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 1, "Unknown")) ? "ERROR" : "OK"); printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("Pots", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 3, "Unknown")) ? "ERROR" : "OK"); printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("Vuni", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 99, NULL)) ? "ERROR" : "OK"); printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("Unknown", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 255, "Unknown")) ? "ERROR" : "OK"); printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("0xABCD", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 0xABCD, NULL)) ? "ERROR" : "OK"); printf("[%s]<Test Case %u> Result: %s! ", __FUNCTION__, ucTestIndex++, strcmp("NullPoniter", NameParser(NULL, UNI_NAM_MAP_NUM, 0xABCD, NULL)) ? "ERROR" : "OK"); }
gUniNameMap在实际项目中有十余个条目,若采用逻辑链实现将非常冗长。
2.5 取值映射
问题:不同模块间同一参数枚举值取值可能有所差异,需要适配。
此处不再给出普通的switch…case或if…else if…else结构,而直接示出以下表驱动实现:
typedef struct{ PORTSTATE loopMEState; PORTSTATE loopMIBState; }LOOPMAPSTRUCT; static LOOPMAPSTRUCT s_CesLoop[] = { {NO_LOOP, e_ds1_looptype_noloop}, {PAYLOAD_LOOP, e_ds1_looptype_PayloadLoop}, {LINE_LOOP, e_ds1_looptype_LineLoop}, {PON_LOOP, e_ds1_looptype_OtherLoop}, {CES_LOOP, e_ds1_looptype_InwardLoop}}; PORTSTATE ConvertLoopMEStateToMIBState(PORTSTATE vPortState) { INT32U num = 0, ii; num = ARRAY_NUM(s_CesLoop); for(ii = 0; ii < num; ii++) { if(vPortState == s_CesLoop[ii].loopMEState) return s_CesLoop[ii].loopMIBState; } return e_ds1_looptype_noloop; }
/********************************************************** * 功能描述:进行二维数组映射表的一对一映射,用于参数适配 * 参数说明:map -- 二维数组映射表 elemSrc -- 映射源,即待映射的元素值 elemDest -- 映射源对应的映射结果 direction -- 映射方向字节,表示从数组哪列映射至哪列。 高4位对应映射源列,低4位对应映射结果列。 defaultVal -- 映射失败时置映射结果为缺省值 * 示例:ARRAY_MAPPER(gCesLoopMap, 3, ucLoop, 0x10, NO_LOOP); 则ucLoop = 2(LINE_LOOP) **********************************************************/ #define ARRAY_MAPPER(map, elemSrc, elemDest, direction, defaultVal) do{ INT8U ucMapIdx = 0, ucMapNum = 0; ucMapNum = sizeof(map)/sizeof(map[0]); for(ucMapIdx = 0; ucMapIdx < ucMapNum; ucMapIdx++) { if((elemSrc) == map[ucMapIdx][((direction)&0xF0)>>4]) { elemDest = map[ucMapIdx][(direction)&0x0F]; break; } } if(ucMapIdx == ucMapNum) { elemDest = (defaultVal); } }while(0)
参数取值转换时直接调用统一的映射器宏,如下:
static INT8U gCesLoopMap[][2] = { {NO_LOOP, e_ds1_looptype_noloop}, {PAYLOAD_LOOP, e_ds1_looptype_PayloadLoop}, {LINE_LOOP, e_ds1_looptype_LineLoop}, {PON_LOOP, e_ds1_looptype_OtherLoop}, {CES_LOOP, e_ds1_looptype_InwardLoop}}; ARRAY_MAPPER(gCesLoopMap, tPara.dwParaVal[0], dwLoopConf, 0x01, e_ds1_looptype_noloop);
另举一例:
#define CES_DEFAULT_JITTERBUF (INT32U)2000 /* 默认jitterbuf为2000us,而1帧=125us */ #define CES_JITTERBUF_STEP (INT32U)125 /* jitterbuf步长为125us,即1帧 */ #define CES_DEFAULT_QUEUESIZE (INT32U)5 #define CES_DEFAULT_MAX_QUEUESIZE (INT32U)7 #define ARRAY_NUM(array) (sizeof(array) / sizeof((array)[0])) /* 数组元素个数 */ typedef struct{ INT32U dwJitterBuffer; INT32U dwFramePerPkt; INT32U dwQueueSize; }QUEUE_SIZE_MAP; /* gCesQueueSizeMap也可以(JitterBuffer / FramePerPkt)值为索引,更加紧凑 */ static QUEUE_SIZE_MAP gCesQueueSizeMap[]= { {1,1,1}, {1,2,1}, {2,1,2}, {2,2,1}, {3,1,3}, {3,2,1}, {4,1,3}, {4,2,1}, {5,1,4}, {5,2,3}, {6,1,4}, {6,2,3}, {7,1,4}, {7,2,3}, {8,1,4}, {8,2,3}, {9,1,5}, {9,2,4}, {10,1,5}, {10,2,4}, {11,1,5}, {11,2,4}, {12,1,5}, {12,2,4}, {13,1,5}, {13,2,4}, {14,1,5}, {14,2,4}, {15,1,5}, {15,2,4}, {16,1,5}, {16,2,4}, {17,1,6}, {17,2,5}, {18,1,6}, {18,2,5}, {19,1,6}, {19,2,5}, {20,1,6}, {20,2,5}, {21,1,6}, {21,2,5}, {22,1,6}, {22,2,5}, {23,1,6}, {23,2,5}, {24,1,6}, {24,2,5}, {25,1,6}, {25,2,5}, {26,1,6}, {26,2,5}, {27,1,6}, {27,2,5}, {28,1,6}, {28,2,5}, {29,1,6}, {29,2,5}, {30,1,6}, {30,2,5}, {31,1,6}, {31,2,5}, {32,1,6}, {32,2,5}}; /********************************************************** * 函数名称:CalcQueueSize * 功能描述:根据JitterBuffer和FramePerPkt计算QueueSize * 注意事项:配置的最大缓存深度 * = 2 * JitterBuffer / FramePerPkt * = 2 * N Packet = 2 ^ QueueSize * JitterBuffer为125us帧速率的倍数, * FramePerPkt为每个分组的帧数, * QueueSize向上取整,最大为7。 **********************************************************/ INT32U CalcQueueSize(INT32U dwJitterBuffer, INT32U dwFramePerPkt) { INT8U ucIdx = 0, ucNum = 0; //本函数暂时仅考虑E1 ucNum = ARRAY_NUM(gCesQueueSizeMap); for(ucIdx = 0; ucIdx < ucNum; ucIdx++) { if((dwJitterBuffer == gCesQueueSizeMap[ucIdx].dwJitterBuffer) && (dwFramePerPkt == gCesQueueSizeMap[ucIdx].dwFramePerPkt)) { return gCesQueueSizeMap[ucIdx].dwQueueSize; } } return CES_DEFAULT_MAX_QUEUESIZE; }
2.6 版本控制
问题:控制OLT与ONU之间的版本协商。ONU本地设置三比特控制字,其中bit2(MSB)~bit0(LSB)分别对应0x21、0x30和0xAA版本号;且bitX为0表示上报对应版本号,bitX为1表示不上报对应版本号。其他版本号如0x20、0x13和0x1必须上报,即不受控制。
最初的实现采用if…else if…else结构,代码非常冗长,如下:
pstSendTlv->ucLength = 0x1f; if (gOamCtrlCode == 0) { vosMemCpy(pstSendTlv->aucVersionList, ctc_oui, 3); pstSendTlv->aucVersionList[3] = 0x30; vosMemCpy(&(pstSendTlv->aucVersionList[4]), ctc_oui, 3); pstSendTlv->aucVersionList[7] = 0x21; vosMemCpy(&(pstSendTlv->aucVersionList[8]), ctc_oui, 3); pstSendTlv->aucVersionList[11] = 0x20; vosMemCpy(&(pstSendTlv->aucVersionList[12]), ctc_oui, 3); pstSendTlv->aucVersionList[15] = 0x13; vosMemCpy(&(pstSendTlv->aucVersionList[16]), ctc_oui, 3); pstSendTlv->aucVersionList[19] = 0x01; vosMemCpy(&(pstSendTlv->aucVersionList[20]), ctc_oui, 3); pstSendTlv->aucVersionList[23] = 0xaa; } else if (gOamCtrlCode == 1) { vosMemCpy(pstSendTlv->aucVersionList, ctc_oui, 3); pstSendTlv->aucVersionList[3] = 0x30; vosMemCpy(&(pstSendTlv->aucVersionList[4]), ctc_oui, 3); pstSendTlv->aucVersionList[7] = 0x21; vosMemCpy(&(pstSendTlv->aucVersionList[8]), ctc_oui, 3); pstSendTlv->aucVersionList[11] = 0x20; vosMemCpy(&(pstSendTlv->aucVersionList[12]), ctc_oui, 3); pstSendTlv->aucVersionList[15] = 0x13; vosMemCpy(&(pstSendTlv->aucVersionList[16]), ctc_oui, 3); pstSendTlv->aucVersionList[19] = 0x01; } //此处省略gOamCtrlCode == 2~6的处理代码 else if (gOamCtrlCode == 7) { vosMemCpy(&(pstSendTlv->aucVersionList), ctc_oui, 3); pstSendTlv->aucVersionList[3] = 0x20; vosMemCpy(&(pstSendTlv->aucVersionList[4]), ctc_oui, 3); pstSendTlv->aucVersionList[7] = 0x13; vosMemCpy(&(pstSendTlv->aucVersionList[8]), ctc_oui, 3); pstSendTlv->aucVersionList[11] = 0x01; }
以下示出C语言中更简洁的实现方式(基于二维数组):
/********************************************************************** * 版本控制字数组定义 * gOamCtrlCode: Bitmap控制字。Bit-X为0时上报对应版本,Bit-X为1时屏蔽对应版本。 * CTRL_VERS_NUM: 可控版本个数。 * CTRL_CODE_NUM: 控制字个数。与CTRL_VERS_NUM有关。 * gOamVerCtrlMap: 版本控制字数组。行对应控制字,列对应可控版本。 元素值为0时不上报对应版本,元素值非0时上报该元素值。 * Note: 该数组旨在实现“数据与控制隔离”。后续若要新增可控版本,只需修改 -- CTRL_VERS_NUM -- gOamVerCtrlMap新增行(控制字) -- gOamVerCtrlMap新增列(可控版本) **********************************************************************/ #define CTRL_VERS_NUM 3 #define CTRL_CODE_NUM (1<<CTRL_VERS_NUM) u8_t gOamVerCtrlMap[CTRL_CODE_NUM][CTRL_VERS_NUM] = { /* Ver21 Ver30 VerAA */ {0x21, 0x30, 0xaa}, /*gOamCtrlCode = 0*/ {0x21, 0x30, 0 }, /*gOamCtrlCode = 1*/ {0x21, 0, 0xaa}, /*gOamCtrlCode = 2*/ {0x21, 0, 0 }, /*gOamCtrlCode = 3*/ { 0, 0x30, 0xaa}, /*gOamCtrlCode = 4*/ { 0, 0x30, 0 }, /*gOamCtrlCode = 5*/ { 0, 0, 0xaa}, /*gOamCtrlCode = 6*/ { 0, 0, 0 } /*gOamCtrlCode = 7*/ }; #define INFO_TYPE_VERS_LEN 7 /* InfoType + Length + OUI + ExtSupport + Version */ u8_t verIdx = 0; u8_t index = 0; for(verIdx = 0; verIdx < CTRL_VERS_NUM; verIdx++) { if(gOamVerCtrlMap[gOamCtrlCode][verIdx] != 0) { vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3); index += 3; pstSendTlv->aucVersionList[index++] = gOamVerCtrlMap[gOamCtrlCode][verIdx]; } } vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3); index += 3; pstSendTlv->aucVersionList[index++] = 0x20; vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3); index += 3; pstSendTlv->aucVersionList[index++] = 0x13; vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3); index += 3; pstSendTlv->aucVersionList[index++] = 0x01; pstSendTlv->ucLength = INFO_TYPE_VERS_LEN + index;
void logall(void) { g_log_control[0] = 0xFFFFFFFF; } void noanylog(void) { g_log_control[0] = 0; } void logOam(void) { g_log_control[0] |= (0x01 << FUNCTION_Oam); } void nologOam(void) { g_log_control[0] &= ~(0x01 << FUNCTION_Oam); } //... ... void logExec(char *name, INT8U enable) { CtcOamLog(FUNCTION_Oam,"log %s %d ",name,enable); if (enable == 1) /*log*/ { if (strcasecmp(name,"all") == 0) { /*字符串比较,不区分大小写*/ logall(); } else if (strcasecmp(name,"oam") == 0) { logOam(); } else if (strcasecmp(name,"pon") == 0) { logPon(); //... ... } else if (strcasecmp(name,"version") == 0) { logVersion(); } else if (enable == 0) /*nolog*/ { if (strcasecmp(name,"all") == 0) { noanylog(); } else if (strcasecmp(name,"oam") == 0) { nologOam(); } else if (strcasecmp(name,"pon") == 0) { nologPon(); //... ... } else if (strcasecmp(name,"version") == 0) { nologVersion(); } else { printf("bad log para "); } }
/* 日志控制类型定义 */ typedef enum { LOG_NORM = 0, /* 未分类日志,可用于通用日志 */ LOG_FRM, /* Frame,OMCI帧日志 */ LOG_PON, /* Pon,光链路相关日志 */ LOG_ETH, /* Ethernet,Layer2以太网日志 */ LOG_NET, /* Internet,Layer3网络日志 */ LOG_MULT, /* Multicast,组播日志 */ LOG_QOS, /* QOS,流量日志 */ LOG_CES, /* Ces,TDM电路仿真日志 */ LOG_VOIP, /* Voip,语音日志 */ LOG_ALM, /* Alarm,告警日志 */ LOG_PERF, /* Performance,性能统计日志 */ LOG_VER, /* Version,软件升级日志 */ LOG_XDSL, /* xDsl日志 */ LOG_DB, /* 数据库操作日志 */ //新日志类型在此处扩展,共支持32种日志类型 LOG_ALL = UINT_MAX /* 所有日志类型 */ }E_LOG_TYPE; /***************************************************************************** * 变量名称:gOmciLogCtrl * 作用描述:OMCI日志控制字,BitMap格式(比特编号从LSB至MSB依次为Bit0->BitN)。 * Bit0~N分别对应E_LOG_TYPE各枚举值(除LOG_ALL外)。 * BitX为0时关闭日志类型对应的日志功能,BitX为1时则予以打开。 * 变量范围:该变量为四字节整型静态全局变量,即支持32种日志类型。 * 访问说明:通过GetOmciLogCtrl/SetOmciLogCtrl/OmciLogCtrl函数访问/设置控制字。 *****************************************************************************/ static INT32U gOmciLogCtrl = 0; //日志类型字符串数组,下标为各字符串所对应的日志类型枚举值。 static const INT8U* paLogTypeName[] = { "Norm", "Frame", "Pon", "Ethernet", "Internet", "Multicast", "Qos", "Ces", "Voip", "Alarm", "Performance", "Version", "Xdsl", "Db" }; static const INT8U ucLogTypeNameNum = sizeof(paLogTypeName) / sizeof(paLogTypeName[0]); static VOID SetGlobalLogCtrl(E_LOG_TYPE eLogType, INT8U ucLogSwitch) { if(LOG_ON == ucLogSwitch) gOmciLogCtrl = LOG_ALL; else gOmciLogCtrl = 0; } static VOID SetSpecificLogCtrl(E_LOG_TYPE eLogType, INT8U ucLogSwitch) { if(LOG_ON == ucLogSwitch) SET_BIT(gOmciLogCtrl, eLogType); else CLR_BIT(gOmciLogCtrl, eLogType); } VOID OmciLogCtrl(CHAR *pszLogType, INT8U ucLogSwitch) { if(0 == strncasecmp(pszLogType, "All", LOG_TYPE_CMP_LEN)) { SetGlobalLogCtrl(LOG_ALL, ucLogSwitch); return; } INT8U ucIdx = 0; for(ucIdx = 0; ucIdx < ucLogTypeNameNum; ucIdx++) { if(0 == strncasecmp(pszLogType, paLogTypeName[ucIdx], LOG_TYPE_CMP_LEN)) { SetSpecificLogCtrl(ucIdx, ucLogSwitch); printf("LogType: %s, LogSwitch: %s ", paLogTypeName[ucIdx], (1==ucLogSwitch)?"On":"Off"); return; } } OmciLogHelp(); }